skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Owen, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Protein content variation in milk can impact the quality and consistency of dairy products, necessitating access to in-line real time monitoring. Here, we present a chemometric approach for the qualitative and quantitative monitoring of β-lactoglobulin and α-lactalbumin, using mid-infrared spectroscopy (MIR). In this study, we employed Hotelling T2 and Q-residual for outlier detection, automated preprocessing using nippy, conducted wavenumber selection with genetic algorithms, and evaluated four chemometric models, including partial least squares, support vector regression (SVR), ridge, and logistic regression to accurately predict the concentrations of β-lactoglobulin and α-lactalbumin in milk. For the quantitative analysis of these two whey proteins, SVR performed the best to interpret protein concentration from 197 MIR spectra originating from 42 Cornell University samples of preserved pasteurized modified milk. The R2 values obtained for β-lactoglobulin and α-lactalbumin using leave one out cross-validation (LOOCV) are 92.8% and 92.7%, respectively, which is the highest correlation reported to date. Our approach introduced a combination of preprocessing automation, genetic algorithm-based wavenumber selection, and used Optuna to optimize the framework for tuning hyperparameters of the chemometric models, resulting in the best chemometric analysis of MIR data to quantitate β-lactoglobulin and α-lactalbumin to date. 
    more » « less
  3. We create intrinsic quantum emitters in silicon nitride, study their structure and temperature-dependent optical properties, and demonstrate monolithic integration with photonic waveguides to evaluate the potential of these single-photon sources for quantum information applications. 
    more » « less
  4. preprint, currently in review 
    more » « less
  5. Coelho, Luis Pedro (Ed.)
    Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. 
    more » « less
  6. Protein arginine methylation is a widespread eukaryotic posttranslational modification thatoccurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein argininemethyltransferases (PRMTs) recognize their respective protein targets is not well understood. Thisreview summarizes the progress that has been made over the last decade or more to resolve this significantbiochemical question. A multipronged approach involving structural biology, substrate profiling,bioorthogonal chemistry and proteomics is discussed. 
    more » « less
  7. null (Ed.)